Name of the Course: Mathematical Foundations of Data Analysis
Class : II B.Sc. CS DA
Unit IV : Topic Multiple Linear Regression Modeling Building and Selection

What is multiple linear regression Modelling?

Multiple linear regression is a regression model that estimates the relationship between a quantitative dependent variable and two or more independent variables using a straight line.

Multiple Regression Formula:

Let Y be a response variable and x_{1} and x_{2} are the predicted variables
The estimated linear regression equation is: $\hat{\mathrm{y}}=\mathrm{b}_{0}+\mathrm{b}_{1} * \mathrm{x}_{1}+\mathrm{b}_{2}{ }^{*} \mathrm{x}_{2}$
$\mathrm{b}_{0}: \mathrm{y}-\mathrm{b}_{1} \mathrm{X}_{1}-\mathrm{b}_{2} \mathrm{X}_{2}$
$\mathrm{b}_{1}:\left[\left(\Sigma \mathrm{x}_{2}{ }^{2}\right)\left(\Sigma \mathrm{x}_{1} \mathrm{y}\right)-\left(\Sigma \mathrm{x}_{1} \mathrm{x}_{2}\right)\left(\Sigma \mathrm{x}_{2} \mathrm{y}\right)\right] /\left[\left(\Sigma \mathrm{x}_{1}{ }^{2}\right)\left(\Sigma \mathrm{x}_{2}{ }^{2}\right)-\left(\sum \mathrm{x}_{1} \mathrm{x}_{2}\right)^{2}\right]$
$\mathrm{b}_{2}:\left[\left(\Sigma \mathrm{x}_{1}{ }^{2}\right)\left(\Sigma \mathrm{x}_{2} \mathrm{y}\right)-\left(\Sigma \mathrm{x}_{1} \mathrm{x}_{2}\right)\left(\Sigma \mathrm{x}_{1} \mathrm{y}\right)\right] /\left[\left(\Sigma \mathrm{x}_{1}{ }^{2}\right)\left(\Sigma \mathrm{x}_{2}{ }^{2}\right)-\left(\Sigma \mathrm{x}_{1} \mathrm{x}_{2}\right)^{2}\right]$

Example: Multiple Linear Regression

Suppose we have the following dataset with one response variable y and two predictor variables X_{1} and X_{2} :

\mathbf{y}	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$
140	60	22
155	62	25
159	67	24
179	70	20
192	71	15
200	72	14
212	75	14
215	78	11

Use the following steps to fit a multiple linear regression model to this dataset.

Solution:

Step 1: Calculate $X_{1}{ }^{2}, X_{2}{ }^{2}, X_{1} y, X_{2} y$ and $X_{1} X_{2}$.

\mathbf{y}	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	
140	60	22	
155	62	25	
159	67	24	
179	70	20	
192	71	15	
200	72	14	
212	75	14	
	215	78	11
Mean Sum	181.5	69.375	18.125
	1452	555	145

Sum

$\mathbf{X}_{\mathbf{1}}{ }^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{2}}{ }^{\mathbf{}}$	$\mathbf{X}_{\mathbf{1}} \mathbf{y}$	$\mathbf{X}_{\mathbf{2}} \mathbf{} \mathbf{}$	$\mathbf{X}_{\mathbf{1}} \mathbf{X}_{\mathbf{2}}$
3600	484	8400	3080	1320
3844	625	9610	3875	1550
4489	576	10653	3816	1608
4900	400	12530	3580	1400
5041	225	13632	2880	1065
5184	196	14400	2800	1008
5625	196	15900	2968	1050
6084	121	16770	2365	858
38767	2823	101895	25364	9859

Step 2: Calculate Regression Sums.
Next, make the following regression sum calculations:

- $\left.\Sigma \mathrm{x}_{1}{ }^{2}=\Sigma \mathrm{X}_{1}{ }^{2}-\left(\Sigma \mathrm{X}_{1}\right)^{2}\right) / \mathrm{n}=38,767-(555)^{2} / 8=\mathbf{2 6 3 . 8 7 5}$
- $\left.\Sigma \mathrm{x}_{2}{ }^{2}=\Sigma \mathrm{X}_{2}^{2}-\left(\Sigma \mathrm{X}_{2}\right)^{2}\right) / \mathrm{n}=2,823-(145)^{2} / 8=\mathbf{1 9 4 . 8 7 5}$
- $\Sigma \mathrm{x}_{1} \mathrm{y}=\Sigma \mathrm{X}_{1} \mathrm{y}-\left(\Sigma \mathrm{X}_{1} \Sigma \mathrm{y}\right) / \mathrm{n}=101,895-\left(555^{*} 1,452\right) / 8=\mathbf{1 , 1 6 2 . 5}$
- $\Sigma \mathrm{x}_{2} \mathrm{y}=\Sigma \mathrm{X}_{2} \mathrm{y}-\left(\Sigma \mathrm{X}_{2} \Sigma \mathrm{y}\right) / \mathrm{n}=25,364-(145 * 1,452) / 8=\mathbf{- 9 5 3 . 5}$
- $\Sigma \mathrm{X}_{1} \mathrm{X}_{2}=\Sigma \mathrm{X}_{1} \mathrm{X}_{2}-\left(\Sigma \mathrm{X}_{1} \Sigma \mathrm{X}_{2}\right) / \mathrm{n}=9,859-\left(555^{*} 145\right) / 8=\mathbf{- 2 0 0 . 3 7 5}$

Reg Sums | 263.875 | 194.875 | 1162.5 | -953.5 | -200.375 |
| :--- | :--- | :--- | :--- | :--- |

Step 3: Calculate b_{0}, b_{1}, and b_{2}.
The formula to calculate b_{1} is: $\left[\left(\Sigma \mathrm{x}_{2}{ }^{2}\right)\left(\Sigma \mathrm{x}_{1} \mathrm{y}\right)-\left(\Sigma \mathrm{x}_{1} \mathrm{x}_{2}\right)\left(\Sigma \mathrm{x}_{2} \mathrm{y}\right)\right] /\left[\left(\Sigma \mathrm{x}_{1}{ }^{2}\right)\left(\Sigma \mathrm{x}_{2}{ }^{2}\right)-\right.$ $\left.\left(\sum \mathrm{x}_{1} \mathrm{x}_{2}\right)^{2}\right]$

Thus, $\mathbf{b}_{\mathbf{1}}=[(194.875)(1162.5)-(-200.375)(-953.5)] /[(263.875)(194.875)-(-$ $\left.200.375)^{2}\right]=\mathbf{3 . 1 4 8}$

The formula to calculate b_{2} is: $\left[\left(\sum \mathrm{x}_{1}{ }^{2}\right)\left(\sum \mathrm{x}_{2} \mathrm{y}\right)-\left(\sum \mathrm{x}_{1} \mathrm{x}_{2}\right)\left(\sum \mathrm{x}_{1} \mathrm{y}\right)\right] /\left[\left(\sum \mathrm{x}_{1}{ }^{2}\right)\left(\sum \mathrm{x}_{2}{ }^{2}\right)-\right.$ $\left.\left(\sum \mathrm{x}_{1} \mathrm{X}_{2}\right)^{2}\right]$

Thus, $\mathbf{b}_{2}=[(263.875)(-953.5)-(-200.375)(1152.5)] /[(263.875)(194.875)-(-$ $200.375)^{2}$] $=\mathbf{- 1 . 6 5 6}$

The formula to calculate b_{0} is: $\bar{y}-\mathrm{b}_{1} \mathrm{X}_{1}-\mathrm{b}_{2} \mathrm{X}_{2}$
Thus, $\mathbf{b}_{\mathbf{0}}=181.5-3.148(69.375)-(-1.656)(18.125)=\mathbf{- 6 . 8 6 7}$

Step 5: Place $\mathbf{b}_{\mathbf{0}}, \mathbf{b}_{\mathbf{1}}$, and $\mathbf{b}_{\mathbf{2}}$ in the estimated linear regression equation.
The estimated linear regression equation is: $\hat{y}=b_{0}+b_{1} * x_{1}+b_{2} * x_{2}$
In our example, it is $\hat{\mathbf{y}}=\mathbf{- 6 . 8 6 7}+\mathbf{3 . 1 4 8} \mathrm{x}_{\mathbf{1}}-\mathbf{1 . 6 5 6} \mathrm{x}_{\mathbf{2}}$

How to Interpret a Multiple Linear Regression Equation

Here is how to interpret this estimated linear regression equation: $\hat{y}=-6.867+$ $3.148 \mathrm{x}_{1}-1.656 \mathrm{x}_{2}$
$\mathbf{b}_{\boldsymbol{0}}=\mathbf{- 6 . 8 6 7}$. When both predictor variables are equal to zero, the mean value for y is -6.867 .
$\mathbf{b}_{\mathbf{1}}=$ 3.148. A one unit increase in x_{1} is associated with a 3.148 unit increase in y , on average, assuming x_{2} is held constant.
$\mathbf{b}_{\mathbf{2}}=\mathbf{- 1 . 6 5 6}$. A one unit increase in x_{2} is associated with a 1.656 unit decrease in y , on average, assuming x_{1} is held constant.

