Name of the Course: Mathematical Foundations of Data Analysis

Class : II B.Sc. CS DA

Unit IV : Topic Multiple Linear Regression Modeling Building and Selection

What is multiple linear regression Modelling?

Multiple linear regression is a regression model that **estimates the relationship** between a **quantitative dependent variable** and **two or more independent variables using a straight line.**

Multiple Regression Formula:

Let Y be a response variable and x_1 and x_2 are the predicted variables

The estimated linear regression equation is: $\hat{y} = b_0 + b_1 x_1 + b_2 x_2$

 $\begin{array}{l} b_0 : y - b_1 X_1 - b_2 X_2 \\ b_1 : [(\Sigma x_2^2)(\Sigma x_1 y) - (\Sigma x_1 x_2)(\Sigma x_2 y)] / [(\Sigma x_1^2) (\Sigma x_2^2) - (\Sigma x_1 x_2)^2] \\ b_2 : [(\Sigma x_1^2)(\Sigma x_2 y) - (\Sigma x_1 x_2)(\Sigma x_1 y)] / [(\Sigma x_1^2) (\Sigma x_2^2) - (\Sigma x_1 x_2)^2] \end{array}$

Example: Multiple Linear Regression

Suppose we have the following dataset with one response variable y and two predictor variables X_1 and X_2 :

У	X 1	X ₂
140	60	22
155	62	25
159	67	24
179	70	20
192	71	15
200	72	14
212	75	14
215	78	11

Use the following steps to fit a multiple linear regression model to this dataset.

Solution:

Step 1: Calculate X_1^2 , X_2^2 , X_1y , X_2y and X_1X_2 .

	У	X 1	X ₂
	140	60	22
	155	62	25
	159	67	24
	179	70	20
	192	71	15
	200	72	14
	212	75	14
	215	78	11
Mean	181.5	69.375	18.125
Sum	1452	555	145

X ₁ ²	X ₂ ²	X ₁ y	X ₂ y	$X_1 X_2$	
3600	484	8400	3080	1320	
3844	625	9610	3875	1550	
4489	576	576 10653		1608	
4900	400	12530	3580	1400	
5041	225	13632	2880	1065	
5184	196	14400	2800	1008	
5625	196	15900	2968	1050	
6084	121	16770	2365	858	
38767	2823	101895	25364	9859	

Step 2: Calculate Regression Sums.

Next, make the following regression sum calculations:

- $\Sigma x_1^2 = \Sigma X_1^2 (\Sigma X_1)^2) / n = 38,767 (555)^2 / 8 = 263.875$
- $\Sigma x_2^2 = \Sigma X_2^2 (\Sigma X_2)^2 / n = 2,823 (145)^2 / 8 = 194.875$
- $\Sigma x_1 y = \Sigma X_1 y (\Sigma X_1 \Sigma y) / n = 101,895 (555*1,452) / 8 = 1,162.5$

Sum

- $\Sigma x_2 y = \Sigma X_2 y (\Sigma X_2 \Sigma y) / n = 25,364 (145*1,452) / 8 = -953.5$
- $\Sigma x_1 x_2 = \Sigma X_1 X_2 (\Sigma X_1 \Sigma X_2) / n = 9,859 (555*145) / 8 = -200.375$

	У	X 1	X ₂		X ₁ ²	X_2^2	X ₁ y	Χ₂γ	X ₁ X ₂
	140	60	22		3600	484	8400	3080	1320
	155	62	25		3844	625	9610	3875	1550
	159	67	24		4489	576	10653	3816	1608
	179	70	20		4900	400	12530	3580	1400
	192	71	15		5041	225	13632	2880	1065
	200	72	14		5184	196	14400	2800	1008
	212	75	14		5625	196	15900	2968	1050
	215	78	11		6084	121	16770	2365	858
Mean	181.5	69.375	18.125	Sum	38767	2823	101895	25364	9859
Sum	1452	555	145						
				-					

 Reg Sums
 263.875
 194.875
 1162.5
 -953.5
 -200.375

Step 3: Calculate b₀, b₁, and b₂.

The formula to calculate b_1 is: $[(\Sigma x_2^2)(\Sigma x_1 y) - (\Sigma x_1 x_2)(\Sigma x_2 y)] / [(\Sigma x_1^2) (\Sigma x_2^2) - (\Sigma x_1 x_2)^2]$

Thus, $\mathbf{b_1} = [(194.875)(1162.5) - (-200.375)(-953.5)] / [(263.875) (194.875) - (-200.375)^2] =$ **3.148**

The formula to calculate b_2 is: $[(\Sigma x_1^2)(\Sigma x_2 y) - (\Sigma x_1 x_2)(\Sigma x_1 y)] / [(\Sigma x_1^2) (\Sigma x_2^2) - (\Sigma x_1 x_2)^2]$

Thus, $\mathbf{b_2} = [(263.875)(-953.5) - (-200.375)(1152.5)] / [(263.875) (194.875) - (-200.375)^2] = -1.656$

The formula to calculate b_0 is: $\overline{y} - b_1X_1 - b_2X_2$

Thus, $\mathbf{b}_0 = 181.5 - 3.148(69.375) - (-1.656)(18.125) = -6.867$

Step 5: Place b₀, b₁, and b₂ in the estimated linear regression equation.

The estimated linear regression equation is: $\hat{y} = b_0 + b_1 x_1 + b_2 x_2$

In our example, it is $\hat{y} = -6.867 + 3.148x_1 - 1.656x_2$

How to Interpret a Multiple Linear Regression Equation

Here is how to interpret this estimated linear regression equation: \hat{y} = -6.867 + $3.148x_1 - 1.656x_2$

 $\mathbf{b}_0 = -6.867$. When both predictor variables are equal to zero, the mean value for y is -6.867.

 $b_1 = 3.148$. A one unit increase in x_1 is associated with a 3.148 unit increase in y, on average, assuming x_2 is held constant.

 $b_2 = -1.656$. A one unit increase in x_2 is associated with a 1.656 unit decrease in y, on average, assuming x_1 is held constant.